
From Spoken Language to Ontology-Driven Dialogue
Management

Dmitry Mouromtsev1, Liubov Kovriguina1, Yury Emelyanov1, Dmitry Pavlov1,
and Alexander Shipilo2

1 ISST Laboratory, ITMO University, Saint-Petersburg, Russia
www.ifmo.ru

{d.muromtsev,yury.emelyanov,lkovriguina,vergilius}@gmail.com
2 Saint-Petersburg State University, Saint-Petersburg, Russia

www.spbu.ru
alexandershipilo@gmail.com

Abstract. The paper describes the architecture of the prototype of the
spoken dialogue system combining deep natural language processing with
an information state dialogue manager. The system assists technical sup-
port to the customers of the digital TV provider. Raw data are sent to the
natural language processing engine which performs tokenization, mor-
phological and syntactic analysis and anaphora resolution. Multimodal
Interface Language (MMIL) is used for the sentence semantic represen-
tation. A separate module of the NLP engine converts Shallow MMIL
representation into Deep MMIL representation by applying transforma-
tion rules to shallow syntactic structures and generating its paraphrases.
Deep MMIL representation is the input of the module generating facts
for the dialogue manager. Facts are extracted using the domain ontology.
A fact itself is an RDF triple containing temporal information wrapped
in the move type. Dialogue manager can accept unlimited number of
facts and supports mixed initiative.

Keywords: spoken dialogue systems, domain ontology development, nat-
ural language processing, MMIL applications, paraphrase generation, in-
formation state approach

1 Introduction

The developed dialogue system is to assess customer support to the clients of dig-
ital television provider. The prototype of the system communicates with clients
using chat window. The system is able to find out the problem and offer solution
and give instructions how to fix the problem, otherwise it redirects the client to
operator (human) or escalates the problem for another level of support.

The prototype deals with specially prepared textual data. Original training
data are 150 human-human dialogues (5600 tokens) between users and techni-
cal support concerning troubles with digital TV subscription. The refinement
included ellipsis recovery, discontinuity and spontaneous speech disfluency re-
moval.



2 Dmitry Mouromtsev et al.

The main goal of the project was to develop a dialogue system which will
classify the problem dynamically, will be able to accept unlimited number of
facts and support mixed initiative. This determined choosing information state
approach for dialogue management.

2 Related Work

There is a number of plan-based dialogue systems in healthcare3 and technol-
ogy[1] which support mixed initiative and interpret the dialogue using ontolo-
gies[1][2]. We decided to develop Natural Language Processing engine performing
full and deep linguistic analysis instead of using n-gram or bag-of-words mod-
els. Shallow syntax transformation and paraphrasing rules applied to shallow
syntax structures to produce invariant utterance structures have been also im-
plemented. It is a well-known fact that direct mapping of the sentence to the
system command is impossible excluding some very simple cases (e.g., greeting,
acknowledgement).

3 Natural Language Processing Engine

NLP engine performs full linguistic analysis of the text in Russian language in-
cluding tokenization, morphological analysis and syntactic analysis. SemSyn[3]
parser tags the sentence, analyzes its syntactic structure and produces a depen-
dency tree in the output, performing syntactic ambiguity resolution. SemSyn
parser performs correct morphological analysis in 95% of the cases and syntac-
tic analysis in 85-90% of the cases. Syntactic relations, ascribed by the parser,
consider semantics of the word (or the construction): the rule invocation de-
pends on the entries’ characteristics in the Tuzov semantic dictionary[4] There
are about 60 relations used by the parser to resolve prepositional ambiguity,
distinguish subject and object, etc. These relations can be plainly mapped to se-
mantic roles. The XML parse tree is sent to the semantic representation module
which converts it to one or more MMIL components.

4 Sentence semantic representation

MMIL unit, a component, obligatory includes propositional content and dialogue
type. Propositional content includes events and participants of the sentence.

Dialogue types proposed in MMIL can be mapped to speech acts (see full
MMIL manual in [5]).

4.1 Utterance Semantic Representation in Shallow and Deep MMIL

MMIL generation module converts XML parse tree into a number of MMIL
components. Each MMIL component is referred to a single sentence or parts of
3 http://www.openclinical.org/dm_homey.html



From Spoken Language to Ontology-Driven Dialogue Management 3

the compound sentence, includes the following entities and their characteristics:
type of the dialogue act, events (entities in time dimension), events character-
istics (time, aspect, mode, person, voice, polarity), participants (entities not
bounded in time dimension), participants characteristics (objType, mmilId, ref-
Status, number, person, gender, modifier), relations between entities (a special
relation "propContent" links speech act type and proposition, relations between
events and participants coincide with semantic roles).
MMIL generation module uses rules dealing with sentence semantics and seman-
tics of grammar categories of tense, aspect, modality relying on the results of
A.V.Bondarko functional grammar[6].

Deep MMIL is not specified by MMIL authors. In our work Deep MMIL
representation is inspired by the ideas of generative grammar, “Meaning-Text”
theory and its further applications. Semantic roles and grammar characteristics
in Deep MMIL to a large extent correspond to the relations in deep sentence
structure in the tradition of generative grammar. To produce Deep MMIL com-

Fig. 1. Utterance representation in Shallow and Deep MMIL

ponent from Shallow MMIL component a number of transformations and para-
phrases is performed. These modifications are aimed to produce the same deep
representation for several shallow structures.

Shallow and Deep MMIL components for the input sentences "My digital
channels do not work" and "My digital channels stopped working" can be seen
in figure 1. Sentence 1 has the same representation for both Shallow and Deep
MMIL.



4 Dmitry Mouromtsev et al.

5 Paraphrase Generation

Implementing paraphrase generation in a dialogue system seems necessary for
several reasons. Firstly, the speaker can express the same meaning differently
and the system should be able to handle it and react the same way. Secondly,
paraphrases may be useful for the generation of clarification questions[7]. More-
over, it was shown that lemmatizing, synonym handling and paraphrasing im-
prove performance of the dialogue system[8]. While developing the prototype
of our dialogue system, we encountered that paraphrasing also contributes to
minimization of ontology entities. There is a number of data-driven paraphrase
generation techniques, which performance has already been evaluated[9]. A pivot
method to generate paraphrases is to use statistical machine translation tech-
niques when each utterance is translated into target language and then back into
source[8]. In the cited paper authors used Google Translate API. In our project
we used paraphrase generation method proposed by Apresyan and Cinman[10].
This method uses the notion of lexical functions introduced by I.A.Mel’čuk and
A.K.Zholkovsky[11]
Mel’čuk defines[11] lexical function as following: "A lexical unit f is a function
that associates with a given lexical unit [= LU] L, which is the argument, or key-
word, of f, a set {Li} of (more or less) synonymous lexical expressions (the value
of f) that are selected contingent on L to manifest the meaning corresponding
to f:

f(L) = {Li}. (1)

Below are some examples of the lexical function OPER (ibid.) (do), (perform)
[support verb]

– OPER 1 (strike N) = to be [on ~]
– OPER 1 (support N) = to lend [~]

In our study paraphrases have been manually extracted from the training
corpus and matched to the set of lexical functions. SYN, OPER and ANTI
turned out to be dominant lexical functions among the encountered in the corpus.
The next subsection gives examples of ANTI paraphrasing rules according to the
paper[10] and provides a mapping to the facts of the knowledge base using ANTI
LF.

5.1 ANTI LF Paraphrase Rule

ANTI LF deals with antonyms and states that negative of the LU corresponds
to the positive value of LU’s antonym. Yu.D.Apresyan defines some antonyms
as lexical units, for which the following statements are true: "P = !R" (ANTI2)
and "stop R = begin !R" (ANTI1)[12, 18]. The following paraphrase rule is
applied: X + Y => ANTI1(X) + ANTI2(Y). Consider the following example:
"Two hours ago internet stopped working" ("Два часа назад перестал работать
интернет"). It is clear that internet does not work but negation is hidden in-
side the verb "stopped". Shallow MMIL generated for this sentence will ascribe



From Spoken Language to Ontology-Driven Dialogue Management 5

positive polarity to this verb meanwhile the fact sent to the dialogue manager
must include false value of the property corresponding to the lexeme "to work".
This paraphrase rule operates with polarity values in MMIL and as list of verbs
denoting action beginning and termination. The given sentence will be para-
phrased into MMIL intermediate structure corresponding to the sentence "Two
hours ago internet began not to work" ("Два часа назад интернет начал не
работать.") and to the final Deep MMIL representation where "work" will have
the values of polarity = ’negative’ and time = ’past’.

Paraphrase generation module uses specially compiled lexical resourсes, which
specify the paraphrase rule, rule constraints and procedures changing Shallow
MMIL structure. if all constraints are fulfilled corresponding paraphrase rule is
invoked. It changes only the items of the MMIL component, no text is generated
or affected. After all possible paraphrase rules have been applied Deep MMIL
component is generated and sent to fact extraction module.

6 Domain Ontology

Firstly, we tried top-down approach to create domain ontology based on instruc-
tions provided for human customer support operator but in the end it proved
to be unusable, because our concepts occurred rarely in real dialogues making
impossible to build problem solving algorithms.

So, we switched to bottom-up approach and distinguished 6 types of problems
with TV subscription and built the ontology according to empirical data.

Devices (TV set, router, set-top box, etc.), connectors (cable, switch, etc.)
services and tariffs, user, etc. are represented as classes. Events are modeled as
properties, like ‘operational’ property that has domain of Service and range of
boolean, and restrict our modelling power. The problem was that utterances
always has temporal reference which is difficult to model in OWL, so temporal
level was introduced to the fact structure.

6.1 Lexical information in the domain ontology

Domain ontology incorporates the level of lexical semantics.
Synonyms are stored in listed as lemmas of the concept, i.e. for the boolean

datatype property "insert" lemmas "insert", "stick in" and "put in" are stored.
Some operations, expressed by properties like "insert", "switch on", "plug in"
etc. have opposite operations. Each of these operations is stored in a separate
subclass of the class defining the general name of these operations (see fig. 24).
Such representation of concepts that denote opposite operations allows to specify
complex operations using part-whole relation, e.g. rebooting,a holonym, except
lemma specifying can be defined with two its meronyms: "switch on" and "switch
off".

4 Visualized using http://www.ontodia.org/



6 Dmitry Mouromtsev et al.

Fig. 2. Event representation in domain ontology

7 Extracting facts for the Dialogue Manager from Deep MMIL

Fact extraction is implemented in the separate model, having Deep MMIL in
the output and generally producing an RDF triple wrapped in the fact type and
move type tags.

7.1 Types of Facts in the Knowledge Base of the Dialogue Manager

The developed dialogue manager supports all main concepts of the informa-
tion state approach. Dialogue manager’s data structure pecularity is the fol-
lowing: each move, except the most simplest GREET and QUIT, includes fac-
tual information embedded in the "Fact" structure. There are three types of
"Fact" in the system: "SimpleFact" (stores short answers), "Agreement" (stores
boolean value for user’s confirmation/rejection), "PropertyFact" (stores subject-
predicate-value (for datatype properties) and subject-predicate-object (for ob-
ject properties) triples, each corresponding to the elementary fact) and "Alter-
nativeFact" (stores multiple PropertyFacts).

7.2 Fact Extraction Algorithm

This module is responsible for Deep MMIL parsing and extracting facts for the
knowledge base which will be used for the dialogue manager. Basic idea of the
algorithm is the following: each participant is the candidate subject (participant
lemma is searched among lemmas of the domain ontology classes), each event
is the candidate predicate (event lemma is searched among lemmas of the do-
main ontology properties)[13]. Combining move types, properties and temporal
information allows to use the same ontology entities for different utterances: the
only property tv:subscribed is stored in the ontology and corresponds to several
situations, e.g. when the user 1) wants to subscribe a service, 2) has already
subscribe it, 3) wants to unsubscribe the service. Extending speech act type and
proposition distinction forth to the knowledge base and dialogue manager allows
to reduce ontology size and keep rules more observable.



From Spoken Language to Ontology-Driven Dialogue Management 7

8 Dialogue Manager

8.1 Dialogue Move Engine

Dialogue move engine is responsible for maintaining context of dialogue, guid-
ing basic flow of dialogue and question answering. It knows if user or system
answered current question and maintains common facts for dialogue, as well
as keeps plan for the next few actions. Dialogue move engine was created fol-
lowing the ideas described in GoDiS and implemented in TrindiKit with some
modifications. We’ve added dialogue move type ‘TELL’ to provide informative
messages to user and not to confuse this messages with answers to user questions.
We’ve also added modification to update rules to allow accommodation of in-
coming facts when there are no relevant questions in QUD to implement mixed
initiative dialog scheme. Data structures of information state holding moves,
agenda, plan, common and private beliefs were created, along with update and
select rules in Java programming language, unlike traditional implementation of
GoDiS in TrindiKit in Prolog and therefore they use different abstractions for
rule definition and application.

8.2 Domain Binding

GoDiS defines different functions on facts: relevant (if answer fact is relevant to
question fact), resolves (if answer fact resolves question fact), combine (to com-
bine question fact with answer fact to produce resolving fact). As stated above,
we have information about concepts, properties and their types in ontology and
use it doing relevant, resolves and combines functions on facts: to check data
types, to use concept taxonomy trees to see if answer fits the question.

8.3 Problem solving

Dialogue move engine handles only basic part of dialogue flow. The more complex
part of dialogue flow depends on things being said from both parties the more it
depends on domain knowledge. The developed dialogue manager doesn’t belong
to command dialogue managers (like Smart Home control) or search systems or
booking systems. The dialogue system should collaborate with user solving his
problem, present him diagnostics options or asking to do specific task and tell
if the main problem has gone. Simultaneously, user can ask questions about the
data in information system, like balance, etc. The system may choose to redirect
user to particular service to get additional help or query diagnostics system if
there were any problems with that particular user. To implement this kind of
system behaviour we chose to put the knowledge of interaction in rule system.
Each time a fact comes from user, we check if any rule has fired. We used Drools
Rule Engine5 with custom domain-specific language layer.

5 http://www.drools.org/



8 Dmitry Mouromtsev et al.

9 Evaluation, Conclusion and Future Work

Intermediate prototype evaluation performed on automatically generated Shal-
low MMIL components and its parts has shown the necessity of incomplete and
contradictory facts handling. Future work implies massive research and develop-
ment activities. NLP engine should be implemented with the parser analyzing
spoken language syntax correctly. The algorithm of fact extraction needs refine-
ment and elaboration. Ontology requires enlargement and the dialogue manager
should be learnt to support partial and contradictory facts. Finally, handling
large rule base is a hard task and another ways of storing and executing knowl-
edge for problem-driven dialogue management should be elaborated.

10 Acknowledgements

This work was partially financially supported by the Government of the Russian
Federation, Grant 074-U01.

References

1. Görz, G., Bücher, K., Ludwig, B., Schweinberger, F., Thabet, I.: Combining a lex-
ical taxonomy with domain ontology in the erlangen dialogue system. In: Proceed-
ings of the KI2003 Workshop on Reference Ontologies and Application Ontologies,
Hamburg, Germany, September 16, 2003. (2003)

2. Maema, M.: OVR: A Novel Architecture for Voice-Based Applications. In: Thesis
submitted for Master of Science. (2011)

3. Boyarsky, K., Kanevsky, E.: The semantic-and-syntactic parser SEMSIN. In:
International conference on computational linguistics Dialog-2012. (2012)

4. Tuzov, V.: Semantic dictionary of the Russian language,
http://emi.nw.ru/INDEX.html?0/Voc.html

5. Rojas-Barahona, L.M., Bazillon, T., Quignard, M., Lefevre, F.: Using MMIL for
the high level semantic annotation of the French MEDIA dialogue corpus. In:
Proceedings of the Ninth International Conference on Computational Semantics,
Association for Computational Linguistics (2011) 375–379

6. Bondarko, A.V.: Functional grammar: a field approach. Volume 35., John Ben-
jamins Publishing (1991)

7. Ebert, C., Lappin, S., Gregory, H., Nicolov, N.: Generating full paraphrases of frag-
ments in a dialogue interpretation system. In: Proceedings of the Second SIGdial
Workshop on Discourse and Dialogue-Volume 16, Association for Computational
Linguistics (2001) 1–10

8. Gardent, C., Rojas-Barahona, L.M.: Using paraphrases and lexical semantics to
improve the accuracy and the robustness of supervised models in situated dialogue
systems. In: Proceedings of the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP Seattle, Seattle, Washington, USA, meeting of
SIGDAT, a Special Interest Group of the ACL. (2013) 808–813

9. Metzler, D., Hovy, E., Zhang, C.: An empirical evaluation of data-driven para-
phrase generation techniques. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: short
papers-Volume 2, Association for Computational Linguistics (2011) 546–551



From Spoken Language to Ontology-Driven Dialogue Management 9

10. Apresyan, Y., Zinman, L.: Perifrazirovanie na kompjutere" (in Russian). Vol-
ume 36., Vsesojuznij institut naucnoj b techniceskoj informacii (1998) 177

11. Mel’cuk, I.: Collocations and lexical functions. Volume 31., Clarendon Press,
Oxford (1998) 23–53

12. Apresyan, Y.: Lexicheskaya semantika: Sinonimiceskije sredstva jazika (in russian),
Nauka (1974) 367

13. Mouromtsev, D., Kozlov, F., Kovriguina, L., Parkhimovich, O.: A Combined
Method for E-Learning Ontology Population based on NLP and User Activity
Analysis. Volume 1254., CEUR-WS (2014)


